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ABSTRACT. In this paper we characterize the finite sets of points in P2, arising as a
complete intersection of two curves, by means of their realizable sequences. Actually, we
show that a reduced 0-dimensional scheme in P2 is a complete intersection of type (a, b)

iff all its realizable sequences can be obtained by means of direct transpositions from a
special one Mab.

0. Introduction

We are considering a very old problem, going back to mathematicians as Euler, Cramer,
Bezout, Maclaurin and Cayley: the characterization of a finite set of points in P2 which is
the complete intersection of two curves. More recently, Griffith and Harris [1] suggested
the idea of using the “Cayley-Bacharach property”, generalizing the “nine points theo-
rem” for the intersection of two cubics. Such a suggestion was largely followed: Davis,
Geramita, Maroscia, Orecchia, Sauer are mathematicians who contributed to the complete
solution of the problem for a 0-dimensional scheme in P2, extending also the investigation
to more general situations ([2],[3],[4],[5]).

In this paper we characterize the finite sets of points in P2, arising as a complete in-
tersection of two curves, by means of their realizable sequences([6], [7]). More precisely,
we show that a reduced 0-dimensional scheme in P2 is a complete intersection (briefly
c.i.) of type (a, b), a ≤ b, iff all its realizable sequences can be obtained by means of
direct transpositions (see §1,1.B3 ) from a special one Mab; the sequence Mab is realized
just by the intersection of a curve C of degree b with a curve C ′ split into a lines. As a
consequence, we find again the well known description of a c.i. given by its Castelnuovo
function structure and the Cayley-Bacharach condition; it is also immediate to restate the
Cayley- Bacharach theorem for the colength 1 subschemes of a c.i. ([8],[4],[1],[2]).

Our first definition of a realizable sequence is given and studied in [6] and [7] only for a
reduced scheme X; so, this paper deals with that special situation. However, the definition
of a realizable sequence can be extended to any, non necessarily reduced, 0-dimensional
scheme (see [9]); in a next paper, we will investigate more deeply some properties that still
hold in the non reduced case; as a consequence, we will prove that our characterization of
a c.i. in P2 is still valid also in the non reduced case.

This paper was written while both authors were members of I.N.D.A.M.G.S.A.G.A.
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1. Recalls and Notation

A The Hilbert function.

Let us recall some general definitions and results, that will be applied to the special case
of 0-dimensional schemes in P2.

1.A1 To any projective scheme X in Pr = Pr
k ( k algebraically closed) we asso-

ciate a saturated homogeneous ideal I = ⊕i∈NIt of R = k[X0, ..., Xr] and a coordinate
ring A = R/I , of Krull dimension dimX + 1.

1.A2 The Hilbert functionHX(·) of X is the Hilbert function of its standard graded
algebra A = R/I = ⊕i≥0Ai, that is the function H(A, ·) : N −→ N defined as follows:
H(A, i) = dimkAi.

When dimX = 0, it is interesting to consider the first difference of HX, that is the
function ΓX(·) = Γ(A, ·) : N −→ N, defined as Γ(A, i) = H(A, i) −H(A, i − 1), i >
0, Γ(A, 0) = 1. ΓX is called “Castelnuovo function ”of X ([2], §2) and it is zero for
t >> 0. In this situation the degree of X is, by definition, e(X) = e(A) = ΣiΓ(A, i);
e(X) coincides with HX(t), t >> 0 ([3], §0).

1.A3 The functions f : N −→ N that arise as the Castelnuovo function of a
projective scheme are described by Macaulay’s theorem ([10]). In the special case of a
0-dimensional projective scheme in P2, such a theorem says what follows ([2],§2).

Let: α = α(X) = α(A) = min{t : It 6= (0)},
β = β(X) = β(A) = min{t : the elements of It do not have a common factor},
τ = τ(X) = τ(A) = max{t : ΓX(t) 6= 0}.
Then:
ΓX(t) ≥ 0, ΓX(t) 6= 0⇔ 0 ≤ t ≤ τ
For t ≥ 0 : ΓX(t) ≤ t+ 1 and ΓX(t) = t+ 1 iff t ≤ α− 1
For t ≥ α : ΓX(t) ≤ ΓX(t− 1)
For τ + 1 ≥ t ≥ β : ΓX(t) < ΓX(t− 1).

1.A4 If a scheme X of points in P2 is a complete intersection of two curves of
degrees a and b, a ≤ b, that is a c.i of type (a, b) (briefly: CI(a, b)) , then its Castelnuovo
function has a well described shape. More precisely, if we denote such a function as
Γ(a, b; ·), then:

Γ(a, b; t) =


t+ 1, 0 ≤ t ≤ a− 1
a, a− 1 ≤ t ≤ b− 1
a+ b− t− 1, b− 1 ≤ t ≤ a+ b− 1
0, t ≥ a+ b− 1

It is well known that the Castelnuovo function Γ(a, b; ·) is not sufficient to characterize
a complete intersection X. The further condition to be added is the Cayley -Bacharah
condition, which says that all the points of X must have the same degree of separation, or,
in other words, that all the realizable sequences of X must end with the same number; this
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number is necessarily a+ b− 2, as every scheme realizes the non decreasing sequence CΓ

(see [6], Def.2.4 and Prop.2.3), which ends with a+ b− 2.

B Separating sequences.

The following definitions and results can be found in [6], [7],[9]; we recall them here,
for reader’s convenience.

1.B1 A hypersurface of Pr separates a point P from a set of points {P1, ..., Ph}
iff it contains {P1, ..., Ph}, but does not contain P .

Let X be a reduced projective scheme supported at {P1, ..., Pn}. To any ordering
(P1, ..., Pn) of the points of X we associate a sequence of natural numbers S = SP1,...,Pn =
(s1, ..., sn), where s1 = 0 and sk, k > 1, is the least degree of a hypersurface separating
Pk from P1, ..., Pk−1. The number sk is the degree of separation of Pk with respect to
P1, ..., Pk−1. We say that X realizes S or that S is X-realizable. More generally, a se-
quence S is called realizable iff there exists a scheme X realizing it.

1.B2 To any sequence of natural numbers S = (s1, ..., sn) let us associate a func-
tion γS : N −→ N defined as follows: γS(t) = card {i : si = t}, where card J denotes
the cardinality of the set J .

Theorem (see [6],Cor.1.4) If X is any reduced 0-dimensional projective scheme and
S is a sequence realized by X, then γS(·) = ΓX(·).

Notation-Definition 1. Let S be a sequence realized by X. In this situation, γS(·) =
ΓX(·) will be denoted also Γ(S, ·) and called “the Castelnuovo function of S”.

1.B3 A permutation of a sequence (s1, ..., sn) of natural numbers, obtained by
interchanging two elements si, si+1, will be called a direct transposition (briefly d.t.) if
si+1 < si.

Let us recall the following statement (see [6], Cor.2.2):

Proposition If S1 = (s1, ..., si, si+1, ..., sn) is realizable and si > si+1, then also
S2 = (s1, ..., si+1, si, ..., sn) is realizable and it is X-realizable, for every X realizing S1.

1.B4 In this paper we will simply call “segment” any “1-segment” (see [7],§2), that
is any finite increasing sequence of consecutive natural numbers.

1.B5 We denote S̃Γ the set of all sequences realized by a scheme X varying among
all schemes with Castelnuovo function Γ; let MΓ = sup S̃Γ, where the maximum is
computed with respect to the lexicographic order arising from the natural ordering of N.
MΓ turns out to be a sequence of α segments, α = inf{t : Γ(t) 6= t+ 1}. More precisely:
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MΓ = (0, 1, 2, ..., ..., ..., ..., n0,
1, 2, ..., ..., ..., n1,

... ... ... ... ...,
... ... ... ...
i, ..., ..., ni

... ... ...
(α− 1), ..., nα−1) ,

where ni+1 ≤ ni, i = 0, ..., α− 2.
In particular, the description of the Castelnuovo function Γ(a, b; ·) of a c.i. recalled in

1.A4 is equivalent to say that MΓ(a,b;·) has the following shape:

MΓ(a,b;·) =

(0, 1, 2, ..., (a− 1), ..., ..., ..., (a+ b− 3), (a+ b− 2),
1, 2, ..., (a− 1), ..., ..., ..., (a+ b− 3),

... ... ... ... ... ...
(a− 2), (a− 1), ..., ..., b,

(a− 1), ..., (b− 1)) .

We recall the following:

Theorem (see [7],Cor.6.3,Th.7.3) MΓ is a realizable sequence. Every realizable se-
quence S with Castelnuovo function Γ can be obtained from MΓ with a finite number of
direct transpositions.

2. Realizable sequences characterizing a CI(a, b).

Our aim is to characterize a 0-dimensional reduced scheme, which is a c.i in P2, by
means of its set of realizable sequences. More precisely, we prove the following

Theorem 1. A reduced 0-dimensional scheme X of P2 = P2
k, k algebraically closed,

is a CI(a, b) iff every realizable sequence S of X can be obtained, by d.t., from the se-
quence

Mab = (0, 1, 2, ..., ..., (b− 1),
1, 2, ..., ..., (b− 1), b,
... ... ... ... ... ...

(a− 1), ..., (b− 1), ..., (a+ b− 2)) .

Remark 1. Mab is a sequence of segments, each of which contains b elements; it is easy
to check that it can be obtained from MΓ(a,b) by d.t.. So, if S arises from Mab by d.t.,
then it comes by d.t. also from MΓ(a,b) (see 1.B5).



COMPLETE INTERSECTIONS IN P2 ... 5

Notation-Definition 2. If Y is any 0-dimensional reduced scheme in P2, and P ∈ Y, let
us denote dY(P ) the degree of separation of P with respect to Y − {P}, that is the least
degree of a curve containing Y − {P} and not containing P .

Remark 2. If X is a c.i. of type (a, b), the Cayley- Bacharach condition says that
dX(P ) = a+ b− 2, for every point P ∈ X . Theorem 1 gives information on the possible
degrees of separation of a point of X with respect to any subscheme not containing it.

In the sequel we denote fd, gd, ... a homogeneous polynomial of degree d.
We need the following preliminary result (see also [2],Th.3.1):

Proposition 1. I is the homogeneous ideal of a c.i of type (a, b) iff the following
conditions are satisfied:
i) Γ(R/I, ·) = Γ(a, b; ·)
ii) For every ht, t < a, the ideal J = (ht, I) satisfies the condition: e(R/J) ≤ tb.

Proof Let us suppose I = (fa, gb) to be the ideal of a c.i. Then condition i)
is clearly satisfied (1.A4). Moreover, the regularity of the sequence (fa, gb) implies:
depthJ ≥ 2; so also the sequence (ht, gb) is regular; this implies e(R/(ht, gb)) = tb
and the inclusion (ht, gb) ⊆ J gives e(J) ≤ tb.

Viceversa, let us suppose i) and ii) verified. We first recall that condition i) implies I
to have two generators fa and gb and all the other generators (if they exist) to be of degree
greater than b. So, I is a c.i iff fa, gb is a regular sequence: in fact, if such a sequence
is regular, its Γ ’s structure says that there are no more generators in degree greater than
b ([11]) . Let us suppose G.C.D(fa, gb) = ht̄, 0 < t̄ < a, and prove that J = (ht̄, I)
satisfies the relation e(R/J) > t̄b, against ii). To this aim, let us denote c the minimal
degree in which a third generator of I appears; then c is a degree of maximal growth,
so that we can apply the ”splitting theorem” 3.1 of [12]. We get that Γ(R/J, ·) is the
truncation of Γ(R/I, ·) at level t̄ = Γ(R/I, c− 1), c = a+ b− t̄, that is:

Γ(R/J, u) =


u+ 1, u ≤ t̄− 1
t̄, t̄ ≤ u ≤ a+ b− t̄− 1
Γ(I, u), u ≥ a+ b− t̄ .

As a consequence, for u >> 0, H(R/J, u) = (a+ b− t̄)t̄ = e(R/J) > t̄b.

Now we are ready to prove the first part of Theorem 1 .

Theorem 2. Let X be a 0-dimensional reduced scheme in P2 such that all its realiz-
able sequences can be obtained from Mab by a finite number of d.t.. Then X is a CI(a, b).

Proof It is enough to prove that, if I is the homogeneous ideal of X, then it satisfies
condition ii) of Proposition 1, as the equality Γ(Mab, ·) = Γ(a, b; ·) guaranties condition
i). Let us suppose that condition ii) is not satisfied, so that there exists a form ht, t < a,
such that e(R/J) = e(R/Jsat) = m > tb, with J = (ht, I). As I and, as a consequence
Jsat, are ideals of reduced schemes, this hypothesis means that there are just m distinct
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points P1, ..., Pm of X lying on a curve of degree t. So any ordering of X starting with
P1, ..., Pm, gives rise to a realizable sequence S = (s1, ..., sm, u, ...), where u ≤ t, as any
other point of X is separated from P1, ..., Pm by a curve of degree ≤ t. Now, it is enough
to observe that such a sequence cannot be obtained by d.t. from Mab, because in Mab the
number of the elements appearing before the last u, u < a is ub and a sequence of d.t.
cannot increase such a number.

To prove the other implication of Theorem 1, we need some preliminary considerations.

It is immediate to prove the following :

Proposition 2. Let S = (s1, ..., sn) be a sequence of natural numbers.
i) If si < si+h, no product of d.t. can shift si after si+h.
ii) If si ≥ si+h, there exists a product of d.t. shifting si after si+h.
iii) There exists a product of d.t. taking si to the last place in the sequence iff : k >

i⇒ sk ≤ si.

Definition 1. The sequence Sh = (s1, ..., sh) will be called “truncation of S =
(s1, ..., sn) at sh”; it may be useful to set S = Sn.

Let us remark that Γ(Sh, t) is the number of occurrences of t in S before sh+1. We will

denote Σn the group of all permutations on {1, ..., n}.

Let M = (m1, ...,mn) and S = (s1, ..., sn) be sequences with the same function Γ. To
the couple (S,M) we can associate all the elements ψ ∈ Σn satisfying the condition

mψ(h) = sh, h = 1, ..., n.

Each ψ determines a bijection Ψ : S −→M , defined by Ψ(sh) = mψ(h), h = 1, ..., n.
We point our attention on a special ψ, uniquely associated to (S,M), as follows.

Definition 2. Let us denote φSM (or, briefly, φ) the element of Σn satisfying the
following conditions:

mφ(h) = sh, Γ(Mφ(h),mφ(h)) = Γ(Sh, sh).

In other words, if u = sh is the r-th u appearing in S, then mφ(h) is the r-th u appearing
in M .

We will denote ΦSM : S −→M (or, briefly, Φ) the bijection: Φ(sh) = mφ(h).

Remark 3. It is easy to check that:
a) ΦSM ◦ ΦS′S = ΦS′M , for every S, S′ such that Γ(S, ·) = Γ(S′, ·) = Γ(M, ·).
b) If ψi,i+1 is a cycle, of order two, exchanging i and i + 1 and si 6= si+1, the corre-

sponding Ψi,i+1, acting on S, is a Φ, that we will denote Φi,i+1.
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Proposition 3. The following facts are equivalent:
i) Φ−1 is a product of d.t.
ii) S can be obtained from M by d.t.

Proof i)⇒ ii) Obvious, as Φ−1 sends M to S.
ii) ⇒ i) Let Θ =

∏r
h=1 Θ(h)

i,i+1 be the product of d.t. sending M to S. Then Θ−1 =∏1
h=r(Θ

(h)
i,i+1)−1, where, according to Remark b) to Definition 2, (Θh

i,i+1)−1 = Φi,i+1.
As a consequence, thanks to a) of the same Remark, Θ−1 is a Φ.

Proposition 4. The following facts are equivalent:
i) ∀h, Sh can be obtained from Φ(Sh) by d.t..
ii) S can be obtained from M by d.t..

Proof i)⇒ ii) Obvious, as S = Sn.
ii) ⇒ i) According to Proposition 3, Φ−1 is a product of d.t.; to prove that so is its

restriction to Sh, it is enough to verify that (Φ/Sn−1)−1 is a product of d.t. and then use
induction. Let us consider the decomposition Φ =

∏
Φi,i+1, where Φ−1

i,i+1 is a d.t. from
M to S. It is enough to observe that the restriction of Φ to Sn−1 can be obtained from that
product by deleting all the elements acting non trivially on sn.

Now we enter the heart of the problem with the following

Proposition 5. The following facts are equivalent:
i) S can be obtained from M by d.t..
ii) h ∈ {1, ..., n}, t > φ(h), mt ∈ Φ(Sh)⇒ mt < mφ(h).
In other words, all the elements of Φ(Sh), following Φ(sh) = mφ(h) in M , must be

strictly less than sh.
iii) h ∈ {1, ..., n}, u > sh ⇒ Γ(Sh−1, u) = Γ(Sh, u) ≤ Γ(Mφ(h), u).

Proof i)⇒ ii) Proposition 4 says that Sh can be obtained from Φ(Sh) by d.t.; as a
consequence, Proposition 2 iii) states that Φ(sh) must be followed, in Φ(Sh), by elements
less than it.
ii)⇒ i) Let us prove that Sh can be obtained by d.t. from Φ(Sh), for every h: the value

h = n will give the statement. We use induction on h. The case h = 1 gives S1 = Φ(S1),
so that there is nothing to prove. Let us suppose the statement true for h − 1 and prove it
for h. It is enough to prove that Φ(sh) can be brought to the last place by d.t. and this is
true, thank to Proposition 2 iii).

To prove the equivalence between ii) and iii), we have better to rewrite condition ii) in
the following equivalent form:

ii′) h ∈ {1, ..., n}, u > sh ⇒ Γ(Sh, u) = Γ(Φ(Sh)mφ(h) , u),
where we define: Φ(Sh)mφ(h) = Mφ(h)

⋂
Φ(Sh). ii′) ⇒ iii) It is enough to use the

obvious relation: Γ(Φ(Sh)mφ(h) , u) ≤ Γ(Mφ(h), u).
iii)⇒ ii) For any h ∈ {1, ..., n} and u > sh, we must prove the following implication:
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Γ(Sh, u) ≤ Γ(Mφ(h), u)⇒ Γ(Sh, u) = Γ(Φ(Sh)mφ(h) , u).
Without any hypothesis on u, we have:
Γ(Sh, u) = Γ(Φ(Sh), u) ≥ Γ(Φ(Sh)mφ(h) , u),

so that the equality to be proved can be substituted by the inequality
Γ(Sh, u) ≤ Γ(Φ(Sh)mφ(h) , u).

If such a relation is not true, there exists u = st, t < h, such that φ(t) > φ(h). The
definition of φ holds: Γ(Mφ(t), u) = Γ(St, u).
On the other hand, we have:

Γ(Mφ(h), u) < Γ(Mφ(t), u),
Γ(St, u) ≤ Γ(Sh, u).

Hence we get: Γ(Mφ(h), u) < Γ(Sh, u), a contradiction.

Now let us point our attention on the case M = Mab. In this situation, Proposition 5
iii) gives rise to the following

Proposition 6. A realizable S can be obtained from Mab by d.t. iff, for every h =
1, ..., n, the following relations hold:
i) u > sh ≥ b− 1, Γ(Sh−1, u) 6= 0⇒ Γ(Sh−1, u) < Γ(Sh−1, u− 1)
ii) sh < b− 1, 0 ≤ τ ≤ Γ(Sh−1, sh)⇒ Γ(Sh−1, b− 1 + τ) ≤ Γ(Sh−1, sh)− τ .

Proof Let us write condition iii) of Proposition 5 in the hypothesis M = Mab.
If sh ≥ b− 1, 0 < t ≤ Γ(Sh−1, sh), we have:

(1) Γ(Mφ(h), sh + t) = Γ(Mφ(h), sh)− t− 1 = Γ(Sh−1, sh)− t,
so that condition iii) of s:

(2) Γ(Sh−1, sh + t) ≤ Γ(Sh−1, sh)− t, sh ≥ b− 1, 0 < t ≤ Γ(Sh−1, sh).

If sh < b − 1, there are two different situations, according to the value at which we
compute Γ(Mφ(h−1), ·):

(3) Γ(Mφ(h), sh + t) = Γ(Mφ(h), sh)− 1 = Γ(Sh−1, sh), if sh + t ≤ b− 1;

if sh + t ≥ b− 1, let us set sh + t = b− 1 + τ, τ ≤ Γ(Sh−1, sh), so getting

(4)
Γ(Mφ(h), b−1+τ) = Γ(Mφ(h), b−1)−τ−1 = Γ(Mφ(h−1), sh)−τ = Γ(Sh−1, sh)−τ.

Condition (3) allows to translate iii) of Proposition 5 into:

(5) Γ(Sh−1, sh + t) ≤ Γ(Sh−1, sh), sh + t ≤ b− 1

Condition (5) is always verified, because every scheme realizing Sh−1 is contained in a
curve of degree sh, so that α(Sh) ≤ sh and that implies Γ(Sh, ·) not increasing, from sh
ahead.
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Analogously, (4) allows us to translate iii) into:

(6) Γ(Sh−1, b− 1 + τ) ≤ Γ(Sh−1, sh)− τ, 0 ≤ τ ≤ Γ(Sh−1, sh), sh < b− 1,

which is condition (ii) of the statement.
So, we just have to prove that (2) is equivalent to (i).
(2)⇒ i) If we choose t = 1, (2) becomes:

(7) Γ(Sh−1, sh + 1) ≤ Γ(Sh−1, sh)− 1, if Γ(Sh−1, sh) ≥ 1,

which is condition i) when we chose u = sh + 1, for any h.
Now let us suppose the existence of h̄ and ū such that i) fails and get a contradiction.

As ū > b− 1 ≥ a− 1 ≥ α(Sh)− 1, if i) is not true we must have the equality:

(8) Γ(Sh̄−1, ū) = Γ(Sh̄−1, ū− 1) 6= 0.

However, ū > b−1 implies Γ(S, ū) < Γ(S, ū−1), so that there is at least an element ū−
1 appearing in the sequence S after sh̄; let sh̄+w = ū−1 be the first ū following sh̄. Clearly
no ū can appear in the sequence S with index between h̄ and h̄ + w, because, otherwise,
we should have: Γ(Sh̄+w, ū) > Γ(Sh̄+w, ū − 1). So, (8) implies: Γ(Sh̄+w−1, ū) =
Γ(Sh̄+w−1, ū− 1), contrary to (7), with h replaced by h̄+ w and ū− 1 = sh̄+w.
i) ⇒ 2) It is enough to write i) with u = sh + 1, ..., sh + t and add each side of the

inequality.

Now, we are ready to prove the remaining implication of Theorem 2.1, that is:

Theorem 3. Any sequence S, realized by a c.i. scheme of type (a,b), can be obtained
from Mab by d.t..

Proof Let us prove that a sequence S not verifying the conditions of Proposition 6
cannot be realized by a c.i.scheme. First of all we prove that, if the conditions of Proposi-
tion 6 are not satisfied by S, there exists a couple of integers (h̄, ū), ū > sup (sh̄, b− 1),
such that

(9) Γ(Sh̄−1, ū) = Γ(Sh̄−1, ū− 1) 6= 0.

In fact,let (sh̄, ū) be a couple not satisfying Proposition 6. There are two possibilities.
If sh̄ ≥ b − 1, the relation ū ≥ α(Sh̄−1) − 1 implies that Γ(Sh̄−1, ·) cannot be strictly
increasing from ū to ū+ 1, so that equality (9) holds.

If sh̄ < b − 1, set ū = b − 1 + t̄, where t̄ is the first τ for which ii) fails. Then the
inequalities :

Γ(Sh̄−1, (b−1)+(t̄−1)) ≤ Γ(Sh̄−1, sh̄)−t̄+1, Γ(Sh̄−1, b−1+t̄) > Γ(Sh̄, sh̄−1)−t̄
imply Γ(Sh̄−1 + (b− 1) + (t̄− 1)) ≤ Γ(Sh̄−1, b− 1 + t̄). As the other inequality always
holds, we have: Γ(Sh̄−1, b− 1 + t̄) = Γ(Sh̄−1, (b− 1) + (t̄− 1)).
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So (9) is proved and we just observe that a sequence with a truncation Sh̄−1 for which
(9) holds cannot be realized by a c.i.. In fact for a subscheme Y of a c.i. of type (a, b) we
cannot have Γ(Y, t) = Γ(Y, t+ 1), t ≥ b ([13]).

We can easily characterize the CI(a, b)-schemes realizing Mab.

Proposition 7. A reduced scheme X is the c.i. of a curveCb with a curveCa, splitting
into a distinct lines, iff X realizes exactly Mab and the sequences obtained from Mab by
d.t..

Proof Let us suppose the sequences realized by X to be Mab and the ones obtained
from it by d.t.. We prove the statement by induction on a. If a = 1, we just have b
points on a line and M1b = MΓX

= (0, ..., b − 1). So, let us suppose the statement
true until a − 1 and prove it for a. The subsequence M(a−1)b ⊂ Mab is realized by a
subscheme Y of X. The hypothesis that all the realizable sequences of X arise from
Mab by d.t. implies the analogous property for the couple (Y,M(a−1)b). In fact, every
sequence S′ realized by Y can be considered as a truncation of a sequence realized by X
and Φ(S) = Mab, Φ(S′) = M(a−1)b; now we can apply Proposition 4. Using induction,
we conclude that Y is the c.i. of a curve C ′b with a C ′a−1 = L1∪ ...∪La−1, split into a−1
lines. As C ′b is defined uniquely, apart from a multiple of C ′a−1, and any curve containing
X contains also Y, we can choose C ′b = Cb. Now we prove that X −Y = {P1, ..., Pb}
lies on a line. To this aim, let us first observe that the separating degrees of P1, ..., Pb are
respectively a− 1, a, ..., a+ b− 2; the first point Pj , j > 2, not on the line L = (P1, P2),
could be separated from the previous ones by C ′a−1 ∪ L, so that its degree of separation
should be a < a+ j − 2, a contradiction.

Viceversa, let us suppose X = (L1 ∪ ...∪La)∩Cb. Thanks to Theorem 1, it is enough
to prove that X realizes Mab. We use induction on a. If a = 1, the statement is obvious.
So, let us suppose X = Y ∪ (La ∩ Cb), where Y = (L1 ∪ ... ∪ La−1) ∩ Cb realizes
M(a−1)b. If La ∩Cb = (P1, ..., Pb), then Pi is separated from the previous points of X by
a curve Ca−1 ∪Ci−1, so that its degree of separation is ≤ a+ i− 2; as the set of numbers
corresponding to {P1, ..., Pb} is exactly {(a − 1), a, ..., (a + b − 2)}, we get that Pi is
associated to a+ i− 2.

3. Some Applications

Our proof of Theorem 3 lies on a rewriting of condition iii) in Proposition 5, when
M = Mab. It turns out to be of interest also to see what condition ii) becomes in the case
M = Mab. To this aim, let us prove the following

Proposition 8. If M = Mab, condition ii) in Proposition 5 is equivalent to the
following description of Φ(Sh), h = 1, ..., n, n = ab (see Definition 2):

1) Φ(Sh) = (Σh0 ,Σ
h
1 , ...,Σ

h
a−1), where Σhj = (j, j + 1, ..., σhj ) is a (possibly empty)

truncation of the j-th segment Σj appearing in Mab.
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2) Let us denote jk the first ju for which Σhju 6= Σju . Then j ≥ jk implies σhj ≥ σhj+1.

Proof Let us suppose condition ii) of Proposition 5 verified and prove 1) and 2) for
h decreasing from n to 1.

If h = n, we have Sn = S,Φ(Sn) = Mab and 1) and 2) are trivially verified.
Now let us suppose 1) and 2) verified for h = k + 1 and prove them for h = k. As

condition ii) is supposed true, in particular, for Φ(sk+1) = mφ(k+1) ∈ Φ(Sk+1), we have
necessarily:

(10) Φ(sk+1) = σk+1
j ,

where σk+1
j > σk+1

j+1 , for some j = 1, ..., n. As a consequence, 1) and 2) are verified
also for Φ(Sk), obtained from Φ(Sk+1) by deleting Φ(sk+1).

Now, let us suppose 1) and 2) true and prove ii). Let us consider Sk ⊂ Sk+1 and their
images Φ(Sk) ⊂ Φ(Sk+1). As both Φ(Sk) and Φ(Sk+1) satisfy 1) and 2), Φ(sk+1) must
be the last element of a segment of Φ(Sk+1), and the required inequality σk+1

j ≥ σk+1
j+1

must be strict; in fact, the equality σk+1
j = σk+1

j+1 would imply that condition 2) fails for
Φ(Sk). So, condition (10) is verified and, as a consequence, all the elements following
Φ(sk) in Φ(Sk+1) are less than it.

As a consequence of Theorem 1 and Proposition 8, we can enrich a well known charac-
terization of the 0-dimensional schemes in P2, with Castelnuovo function Γ(a, b), which
are c.i..

Theorem 4. ([8],[4],[14]) Let X be a zero dimensional reduced scheme in P2, with
Γ(·) = Γ(a, b; ·). The following facts are equivalent:
i) X is a c.i..
ii) Every realizable sequence of X ends with a+ b− 2.
iii) Every realizable sequence of X arises from Mab by d.t..

Proof Theorem 1 states the equivalence between i) and iii). The implication
iii) ⇒ ii) is obvious, as a + b − 2 is the last and the greatest element of Mab. So,
we just need to prove ii) ⇒ iii). To this aim, let us suppose that X realizes a sequence
S which cannot arise by d.t. from Mab; we will produce a sequence S′, realized by X,
ending with a number strictly less than a+ b− 2.

Our hypothesis on S says that there exists an integer k such that the conditions of
Proposition 8 are satisfied for h = n, n − 1, ..., k + 1, but they are not satisfied at h = k.
This is equivalent to say that Φ(sk+1) is not between the elements σk+1

j , satisfying the
condition σk+1

j > σk+1
j+1 .

Let us denote bk the first integer t satisfying the relation: Γ(Sk+1, t) < Γ(Sk+1, t− 1).
The shape of Φ(Sk+1), described in Proposition 8, says that bk ≤ b. If sk+1 < b −
1, Macaulay’s theorem 1.A3, applied to Φ(Sk), says that Φ(sk+1) cannot be different
from σk+1

j , the end of the segment Σk+1
j to which it belongs. Moreover, the property

Γ(Φ(Sk+1),Φ(sk+1)) = Γ(Sk+1, sk+1) guaranties that Φ(sk+1) = σk+1
j implies σk+1

j >

σk+1
j+1 , as Φ(sk+1) is the last element of Φ(Sk+1), which is equal to sk+1. So, if condition
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1) or condition 2) is not satisfied, we necessarily have: sk+1 ≥ b − 1. In this situation,
Φ(sk+1) 6= σk+1

j implies

Γ(Φ(Sk), sk+1) = Γ(Φ(Sk), sk+1 + 1).

So, we can use the splitting theorem of [12], applied to the subscheme Xk correspond-
ing to the sequence Sk. It says that there is a subscheme Y of Xk contained on a curve
Ct, of degree t ≥ 1 and every curve of degree ≤ sk+1 + 1 containing Y has Ct as a
component. As a consequence, the curves of degree a and b, say Ca and Cb, containing X,
must have Ct as a component, as sk+1 ≥ b − 1. Let us denote Cu the maximal common
component of Ca and Cb, so that Ca = C ′a−u ∪ Cu, Cb = C ′b−u ∪ Cu. The points of X
not lying on Cu must be in C ′a−u ∩C ′b−u. The maximal degree of separation of the points
in C ′a−u ∩ C ′b−u is (a − u) + (b − u) − 2. So, if we order the points of X taking before
the ones lying on Cu, followed by the ones on X − Cu, we easily see that the degree of
separation of the last ones cannot exceed (a + b − u − 2) < a + b − 2. In such a way,
we produce an ordering of X giving rise to a realizable sequence S′ ending with a number
less than a+ b− 2, a contradiction.

As condition ii) is equivalent to the Cayley-Bacharach property, a direct proof of the
equivalence between i) and ii) is given in [3](4.21).

Remark 4. Proposition 8 gives an algorithm to produce all the sequences realized
by some CI(a,b). In fact it says that any such sequence ends with a + b − 2 and, for
k = n, ..., 1 it can be built, step by step, choosing sk = Φ(sk) as one of the σkj ’s satisfying
the condition σkj > σkj+1. The number of possibilities increases quickly, but the beginning
is the following:

... ..., (a+ b− 4), (a+ b− 3), 〉
(a+ b− 3), (a+ b− 2) .

... ..., (a+ b− 3), 〉
(a+ b− 4),

... ..., (a+ b− 5),

Let us observe that the fact that every realizable sequence ends with (..., a+ b− 3, a+
b−2) is a restatement of the Cayley-Bacharach theorem, stating that, if P,Q is any couple
of points of X, then HX(t) = HX−{P,Q}(t), t < a+ b− 3 ( [8],[4],[1]).

Proposition 8 can be used to give a condition characterizing a CI(a,b) in terms of the
Castelnuovo function of its subschemes. To this aim, let us observe what follows. Theo-
rem 1 and Proposition 8 give a characterization of X in terms of a family of subsequences
Φ(Sh) of Mab, each of which is linked to a truncation Sh of a sequence S realized by X.
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It is convenient to link the subsequence Φ(Sh) to a subset of X, more then to a subse-
quence of S. In fact, let (P1, ..., Ph, Ph+1, ..., Pn) be an ordering of X realizing S; then
(P1, ..., Ph) realizes Sh and any other sequence S′h realized by {P1, ..., Ph} = Xh is such
that Φ(S′h) = Φ(Sh). In fact S′h can be completed to a sequence S′ realizing X such
that s′t = st, t ≥ h; moreover, Φ(Sh) and Φ(S′h) are obtained from Mab by deleting the
elements Φ(st), t ≥ h. So, it is meaningful to introduce the following

Notation Let Y = {P1, ..., Ph} be a subset of X and Sh any sequence realized by it.
We set:

Φ(Sh) = Φ(Y).

Remark 5. Φ(X) = Mab is more fit to describe a c.i. scheme than its Castelnuovo
function ΓX(·) (or, equivalently,MΓX(·)). Analogously, the sequence Φ(Y), with the order
inherited by Mab, gives more information than ΓY(·) (or, equivalently, MΓY(·)), that can
be easily built from it; in fact, all the sequences realized by Y can be obtained by d.t. from
Φ(Y), which is, itself, built by d.t. from MΓY(·).

Let us denote S̃X the set of all sequences realized by X. When Y spans the set of all
subsets of X, Φ(Y) spans the set of all subsequences Φ(Sh) ⊂ Mab, for S ∈ S̃X, h =
1, ..., n. So, using Proposition 8, Theorem 1 gives rise to the following:

Proposition 9. A reduced 0-dimensional scheme X of P2, such that ΓX(·) = Γ(a, b; ·),
is a CI(a, b) iff, for every subset Y of X, Φ(Y) satisfies the following conditions:
i) Φ(Y) = (ΣY

0 ,Σ
Y
1 , ...,Σ

Y
a−1), where ΣY

j = (j, j + 1, ..., σY
j ) is a (possibly empty)

truncation of the j-th segment Σj appearing in Mab.
ii) If jk is the first ju for which ΣY

ju
6= Σju , then j ≥ jk implies σY

j ≥ σY
j+1.

It is immediate to verify that conditions i) and ii) can be read on ΓY(·), giving rise to
the following

Proposition 10. A reduced 0-dimensional scheme X of P2 is a CI(a, b) iff
a) ΓX(·) = Γ(a, b; ·);
b) for every subset Y of X, ΓY(·) satisfies the condition: ΓY(t) > ΓY(t + 1), t ≥

b− 1, ΓY(t) 6= 0.

Example Let us suppose ΓX(·) = Γ(3, 4; ·) and X not a c.i., so that there exists a
subscheme Y ⊂ X not satisfying one of the two conditions i) and ii) of Proposition 9. By
Maculay’s theorem ([10]), it is enough to consider subschemes Y such that Φ(Y) comes
fromMab by deleting elements bigger than b−1. In this case the only possible Φ(Y) turns
out to be the following:

Φ(Y) = (0 1 2
1 2 3 4

2 3 5 ).
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So, Γ(Y) = (1, 2, 3, 2, 1, 1); hence Y splits into two subschemes ([12]), one of which
consists of six points on a line. As a consequence, six points of X lie on a line and the
others are the c.i. of a conic and a cubic.

Let us observe that the dY(P )’s, for some P ∈ Y, are exactly the last elements of some
realizable sequence of Y, that is, the numbers appearing in Φ(Y) followed by smaller
integers. So, using the notation of 9, we can state the following

Proposition 11. If X is a CI(a, b), then:
i) Sup{σY

j } = dY(P ), for some P ∈ Y.
ii) For any P ∈ Y, dY(P ) ∈ {σY

j , j ≥ jk−1}.
Remark 6. Taking into account the link between ΓY and Φ(Y), we can restate
Proposition 11 by saying that, if ν = dY(P ), for some P ∈ Y, then:
i) ΓY(ν) > ΓY(ν + 1), if ν < b− 1;
ii) ΓY(ν) > ΓY(ν + 1) + 1, if ν ≥ b− 1,ΓY(ν + 1) 6= 0.

Remark 7. If Y = X, Proposition 11 says the well known fact that all the points of
a CI(a, b) have degree of separation a+ b− 2 (Cayley-Bacharah condition).

If cardY = cardX − 1, Proposition 11 says that all the subschemes obtained from
a CI(a, b) by deleting one point satisfy the Cayley-Bacharah condition and the degree of
separation is a+ b− 3 (C.B. Theorem).

If cardY = cardX − 2, Proposition 11 says that every subset Y, obtained from a
C(a, b) by deleting 2 points, satisfies the condition: dY(P ) = a + b − 3 or dY(P ) =
a+ b−4.( Let us remark that this result could also be obtained by using the C.B. condition
and Corollary 2.2 of [6].). More precisely, there is always some point with degree of
separation a + b − 3, while a point with degree a + b − 4 may exist or not; for instance,
if the scheme X realizes Mab (see Proposition 7), there are points of Y with degree of
separation a + b − 4 (see Proposition 12), while a scheme in uniform position realizes
only the sequence CΓ (see Corollary 2.7 of [6]), and, as a consequence, all its subschemes
satisfy the C.B. condition.

Proposition 12. If X is a CI(a, b) realizing Mab, then any subsequence9 is of the
type Φ(Y), for some Y ⊂ X.

Proof We know, (see Proposition 7) that such a scheme is the intersection of a
curve of degree b with a lines.

If we consider the ordering of X realizing Mab, we can verify that the subscheme Y
corresponding to S realizes S. To this aim, we observe that the sequence S, realized by
Y, either coincides with S or is obtained from it by replacing some elements with smaller
ones. Let us prove that such a replacement cannot occur. If we reorder X starting with
Y, S′ can be completed to a sequence S̄′ such that Γ(S̄′, ·) = Γ(a, b; ·). We now work by
induction on a. If a = 1, the equality S = S′ is obvious. So, let us suppose it true until
a − 1 and prove it for a. We denote X1 the subscheme of X realizing M(a−1)b, S1 the
subsequence of S contained in M(a−1)b and Y1 the scheme Y ∩ X1. By induction, Y1

realizes S1. The numbers corresponding to Y−Y1 cannot be less than the corresponding
ones in S − S1: in fact the hypothesis on S guaranties that they are smaller than the
elements of M(a−1)b − S1. As a consequence, S′ must coincide with S.
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